Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection
نویسنده
چکیده
We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and driftkinetic systems.
منابع مشابه
Ion diamagnetic effects in gyrofluid collisionless magnetic reconnection
Ion diamagnetic effects on collisionless magnetic reconnection are investigated by means of numerical simulations of a Hamiltonian gyrofluid model. The work is focused in particular on the effects of inhomogeneous density equilibria in the large ∆′ regime. The linear growth rates predicted by asymptotic theory are recovered. Nonlinearly the island shape is strongly modified and the flow changes...
متن کاملGyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are investigated by means of numerical simulations, with a Hamiltonian gyrofluid model. In the linear regime, it is found that ion diamagnetic effects decrease the growth rate of the dominant mode. Increasing ion temperature tends to make the magnetic islands propagate in the ion diamagnetic drift direction. In the nonlinear regime, ...
متن کاملHamiltonian derivation of the Charney-Hasegawa-Mima equation
When dissipative terms are dropped, all of the important models of plasma physics are described by partial differential equations that possess Hamiltonian form in terms of noncanonical Poisson brackets. For example, this is the case for ideal magnetohydrodynamics, the Vlasov–Maxwell equations, and other systems see Refs. 7–9 for review . Among these, there exist several reduced fluid models who...
متن کاملStability and nonlinear dynamics aspects of a model for collisionless magnetic reconnection
A Hamiltonian 4-field fluid model describing magnetic reconnection in collisionless plasmas is investigated both analytically and numerically. The noncanonical Hamiltonian structure of the model is used in order to derive equilibrium equations and sufficient conditions for stability of equilibria in the presence of toroidal flow. Numerical simulations of the model equations are then used in ord...
متن کاملNonlinear gyrofluid simulations of collisionless reconnection
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کامل